31 articles since 2016


2024


Download
Disrupting quorum sensing as a strategy to inhibit bacterial virulence in human, animal, and plant pathogens
The development of sustainable alternatives to conventional antimicrobials is needed to address bacterial virulence while avoiding selecting resistant strains in a variety of fields, including human, animal, and plant health. Quorum sensing (QS), a bacterial communication system involved in noxious bacterial phenotypes such as virulence, motility, and biofilm formation, is of utmost interest. In this study, we harnessed the potential of the lactonase SsoPox to disrupt QS of human, fish, and plant pathogens. Lactonase treatment significantly alters phenotypes including biofilm formation, motility, and infection capacity. In plant pathogens, SsoPox decreased the production of plant cell wall degrading enzymes in Pectobacterium carotovorum and reduced the maceration of onions infected by Burkholderia glumae. In human pathogens, lactonase treatment significantly reduced biofilm formation in Acinetobacter baumannii, Burkholderia cepacia, and Pseudomonas aeruginosa, with the cytotoxicity of
Gonzales(2024)PathDis.pdf
Adobe Acrobat Document 1.5 MB
Download
Changes in Active Site Loop Conformation Relate to the Transition toward a Novel Enzymatic Activity
Enzymatic promiscuity, the ability of enzymes to catalyze multiple, distinct chemical reactions, has been well documented and is hypothesized to be a major driver of the emergence of new enzymatic functions. Yet, the molecular mechanisms involved in the transition from one activity to another remain debated and elusive. Here, we evaluated the redesign of the active site binding cleft of lactonase SsoPox using structure-based design and combinatorial libraries. We created variants with largely improved catalytic abilities against phosphotriesters, the best ones being >1000-fold better compared to the wild-type enzyme. The observed shifts in activity specificity are large, and some variants completely lost their initial activity. The selected combinations of mutations have considerably reshaped the active site cavity via side chain changes but mostly through large rearrangements of the active site loops and changes to their conformations, as revealed by a suite of crystal structures. Thi
Jacquet(2024)JACSAu.pdf
Adobe Acrobat Document 5.1 MB
Download
AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified
Gonzales(2024)JNatProd.jpg
JPG Image 2.9 MB

2023


Download
Tuning the Envelope Structure of Enzyme Nanoreactors for In Vivo Detoxification of Organophosphates
Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 μM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential −8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8
Pashirova(2023)IJMS.pdf
Adobe Acrobat Document 2.8 MB
Download
Lactonase-mediated inhibition of quorum sensing largely alters phenotypes, proteome, and antimicrobial activities in Burkholderia thailandensis E264
Introduction: Burkholderia thailandensis is a study model for Burkholderia pseudomallei, a highly virulent pathogen, known to be the causative agent of melioidosis and a potential bioterrorism agent. These two bacteria use an (acyl-homoserine lactone) AHL-mediated quorum sensing (QS) system to regulate different behaviors including biofilm formation, secondary metabolite productions, and motility.
Methods: Using an enzyme-based quorum quenching (QQ) strategy, with the lactonase SsoPox having the best activity on B. thailandensis AHLs, we evaluated the importance of QS in B. thailandensis by combining proteomic and phenotypic analyses.
Results: We demonstrated that QS disruption largely affects overall bacterial behavior including motility, proteolytic activity, and antimicrobial molecule production. We further showed that QQ treatment drastically decreases B. thailandensis bactericidal activity against two bacteria (Chromobacterium violaceum and Staphylococcus aureus), while a spectacu
Gonzales(2023)FCIMB.pdf
Adobe Acrobat Document 3.7 MB

2022


Download
Applying molecular and phenotypic screening assays to identify efficient quorum quenching lactonases
Quorum sensing (QS) is a molecular communication system used by microorganisms to adopt behaviors in a cell density-dependent manner. Lactonase enzymes, able to hydrolyze the signal molecules acyl-homoserine lactones (AHL) can counteract QS-mediated virulence in Gram-negative bacteria. Optimizing lactonases activity or specificity for AHL through enzyme engineering approaches is thus highly attractive to increase protective effect. However, only a limited number of screening methods have been developed to handle and evaluate AHL-degrading enzyme libraries. Here, a series of screening procedures were developed to identify improved lactonases using two previously reported enzymes as benchmarks, namely SsoPox and GcL. Specifically, molecular screenings using six different AHL and based on two reporter strains; i.e., Chromobacterium violaceum CV026 and Pseudomonas putida KS35, are reported. In addition, three phenotype-based screenings aiming to evaluate the ability of enzymes to quench a
Billot(2022)EMT_page-0001.jpg
JPG Image 881.1 KB
Download
Enzyme Nanoreactor for In Vivo Detoxification of Organophosphates
A nanoreactor containing an evolved mutant of Saccharolobus solfataricus phosphotriesterase (L72C/Y97F/Y99F/W263V/I280T) as a catalytic bioscavenger was made for detoxification of organophosphates. This nanoreactor intended for treatment of organophosphate poisoning was studied against paraoxon (POX). Nanoreactors were low polydispersity polymersomes containing a high concentration of enzyme (20 μM). The polyethylene glycol–polypropylene sulfide membrane allowed for penetration of POX and exit of hydrolysis products. In vitro simulations under second order conditions showed that 1 μM enzyme inactivates 5 μM POX in less than 10 s. LD50-shift experiments of POX-challenged mice through intraperitoneal (i.p.) and subcutaneous (s.c.) injections showed that intravenous administration of nanoreactors (1.6 nmol enzyme) protected against 7 × LD50i.p. in prophylaxis and 3.3 × LD50i.p. in post-exposure treatment. For mice s.c.-challenged, LD50 shifts were more pronounced: 16.6 × LD50 in p
Pashirova(2022)ACSAMI.jpg
JPG Image 3.3 MB

2021


Download
Quorum sensing disruption regulates hydrolytic enzyme and biofilm production in estuarine bacteria
Biofilms of heterotrophic bacteria cover organic matter aggregates and constitute hotspots of mineralization, primarily acting through extracellular hydrolytic enzyme production. Nevertheless, regulation of both biofilm and hydrolytic enzyme synthesis remains poorly investigated, especially in estuarine ecosystems. In this study, various bioassays, mass spectrometry and genomics approaches were combined to test the possible involvement of quorum sensing (QS) in these mechanisms. QS is a bacterial cell-cell communication system that relies notably on the emission of N-acylhomoserine lactones (AHLs). In our estuarine bacterial collection, we found that 28 strains (9%), mainly Vibrio, Pseudomonas and Acinetobacter isolates, produced at least 14 different types of AHLs encoded by various luxI genes. We then inhibited the AHL QS circuits of those 28 strains using a broad-spectrum lactonase preparation and tested whether biofilm production as well as β-glucosidase and leucine-aminopeptidase
Urvoy(2021)EnvMicrob.jpg
JPG Image 2.7 MB
Download
Enzymatic Decontamination of G-Type, V-Type and Novichok Nerve Agents
Organophosphorus nerve agents (OPNAs) are highly toxic compounds inhibiting cholinergic enzymes in the central and autonomic nervous systems and neuromuscular junctions, causing severe intoxications in humans. Medical countermeasures and efficient decontamination solutions are needed to counteract the toxicity of a wide spectrum of harmful OPNAs including G, V and Novichok agents. Here, we describe the use of engineered OPNA-degrading enzymes for the degradation of various toxic agents including insecticides, a series of OPNA surrogates, as well as real chemical warfare agents (cyclosarin, sarin, soman, tabun, VX, A230, A232, A234). We demonstrate that only two enzymes can degrade most of these molecules at high concentrations (25 mM) in less than 5 minutes. Using surface assays adapted from NATO AEP-65 guidelines, we further show that enzyme-based solutions can decontaminate 97.6% and 99.4% of 10 g∙m−² of soman- and VX-contaminated surfaces, respectively. Finally, we demonstrate
Jacquet(2021)IJMS.pdf
Adobe Acrobat Document 966.8 KB
Download
Disrupting quorum sensing alters social interactions in Chromobacterium violaceum
Quorum sensing (QS) is a communication system used by bacteria to coordinate a wide panel of biological functions in a cell density-dependent manner. The Gram-negative Chromobacterium violaceum has previously been shown to use an acyl-homoserine lactone (AHL)-based QS to regulate various behaviors, including the production of proteases, hydrogen cyanide, or antimicrobial compounds such as violacein. By using combined metabolomic and proteomic approaches, we demonstrated that QS modulates the production of antimicrobial and toxic compounds in C. violaceum ATCC 12472. We provided the first evidence of anisomycin antibiotic production by this strain as well as evidence of its regulation by QS and identified new AHLs produced by C. violaceum ATCC 12472. Furthermore, we demonstrated that targeting AHLs with lactonase leads to major QS disruption yielding significant molecular and phenotypic changes. These modifications resulted in drastic changes in social interactions between C. violaceum
Mion(2021)npjBiofilmMicrob.pdf
Adobe Acrobat Document 3.3 MB

2020


Download
Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control
Enzymes able to degrade or modify acyl-homoserine lactones (AHLs) have drawn considerable interest for their ability to interfere with the bacterial communication process referred to as quorum sensing. Many proteobacteria use AHL to coordinate virulence and biofilm formation in a cell density–dependent manner; thus, AHL-interfering enzymes constitute new promising antimicrobial candidates. Among these, lactonases and acylases have been particularly studied. These enzymes have been isolated from various bacterial, archaeal, or eukaryotic organisms and have been evaluated for their ability to control several pathogens. Engineering studies on these enzymes were carried out and successfully modulated their capacity to interact with specific AHL, increase their catalytic activity and stability, or enhance their biotechnological potential. In this review, special attention is paid to the screening, engineering, and applications of AHL-modifying enzymes. Prospects and future opportunities a
Billot(2020)JBC.pdf
Adobe Acrobat Document 3.5 MB
Download
Lactonase Specificity Is Key to Quorum Quenching in Pseudomonas aeruginosa
The human opportunistic pathogen Pseudomonas aeruginosa orchestrates the expression of many genes in a cell density-dependent manner by using quorum sensing (QS). Two acyl-homoserine lactones (AHLs) are involved in QS circuits and contribute to the regulation of virulence factors production, biofilm formation, and antimicrobial sensitivity. Disrupting QS, a strategy referred to as quorum quenching (QQ) can be achieved using exogenous AHL-degrading lactonases. However, the importance of enzyme specificity on quenching efficacy has been poorly investigated. Here, we used two lactonases both targeting the signal molecules N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 HSL) and butyryl-homoserine lactone (C4 HSL) albeit with different efficacies on C4 HSL. Interestingly, both lactonases similarly decreased AHL concentrations and comparably impacted the expression of AHL-based QS genes. However, strong variations were observed in Pseudomonas Quinolone Signal (PQS) regulation depending
Rémy(2020)FrontMicrob.pdf
Adobe Acrobat Document 3.2 MB
Download
Steady-State Kinetics of Enzyme-Catalyzed Hydrolysis of Echothiophate, a P–S Bonded Organophosphorus as Monitored by Spectrofluorimetry
Enzyme-catalyzed hydrolysis of echothiophate, a P–S bonded organophosphorus (OP) model, was spectrofluorimetrically monitored, using Calbiochem Probe IV as the thiol reagent. OP hydrolases were: the G117H mutant of human butyrylcholinesterase capable of hydrolyzing OPs, and a multiple mutant of Brevundimonas diminuta phosphotriesterase, GG1, designed to hydrolyze a large spectrum of OPs at high rate, including V agents. Molecular modeling of interaction between Probe IV and OP hydrolases (G117H butyrylcholinesterase, GG1, wild types of Brevundimonas diminuta and Sulfolobus solfataricus phosphotriesterases, and human paraoxonase-1) was performed. The high sensitivity of the method allowed steady-state kinetic analysis of echothiophate hydrolysis by highly purified G117H butyrylcholinesterase concentration as low as 0.85 nM. Hydrolysis was michaelian with Km = 0.20 ± 0.03 mM and kcat = 5.4 ± 1.6 min−1. The GG1 phosphotriesterase hydrolyzed echothiophate with a high efficiency (Km =
Zueva(2020)Molecules.pdf
Adobe Acrobat Document 1.8 MB
Download
Enzymatic decontamination of paraoxon-ethyl limits long-term effects in planarians
Organophosphorus compounds (OP) are highly toxic molecules used as insecticides that inhibit cholinesterase enzymes involved in neuronal transmission. The intensive use of OP for vector control and agriculture has led to environmental pollutions responsible for severe intoxications and putative long-term effects on humans and wild animals. Many in vivo models were studied over the years to assess OP acute toxicity, but the long-term effects are poorly documented. Planarian, a freshwater flatworm having a cholinergic system, has emerged as a new original model for addressing both toxicity and developmental perturbations. We used Schmidtea mediterranea planarians to evaluate long-term effects of paraoxon-ethyl at two sublethal concentrations over three generations. Toxicity, developmental perturbations and disruption of behavior were rapidly observed and higher sensitivity to paraoxon-ethyl of next generations was noticed suggesting that low insecticide doses can induce transgenerational
Poirier(2020)SciRep.pdf
Adobe Acrobat Document 3.3 MB

2019


Download
Quorum Quenching Lactonase Strenghtens Bacteriophage and Antibiotic Arsenal Against Pseudomonas aeruginosa Clinical Isolates
Many bacteria use quorum sensing (QS), a bacterial communication system based on the diffusion and perception of small signaling molecules, to synchronize their behavior in a cell-density dependent manner. QS regulates the expression of many genes associated with virulence factor production and biofilm formation. This latter is known to be involved in antibiotic and phage resistance mechanisms. Therefore, disrupting QS, a strategy known as quorum quenching (QQ), appears to be an interesting way to reduce bacterial virulence and increase antibiotic and phage treatment efficiency. In this study, the ability of the QQ enzyme SsoPox-W263I, a lactonase able to degrade acyl-homoserine lactones, was investigated for quenching both virulence and biofilm formation in clinical isolates of Pseudomonas aeruginosa from diabetic foot ulcers, as well as in the PA14 model strain. These strains were further evolved to resist to bacteriophage cocktails. Overall, 10 antibiotics or bacteriophage resistant
Mion(2019)FrontMicrobiol.pdf
Adobe Acrobat Document 4.6 MB
Download
Planarian, an emerging animal model for toxicology studies
Since a few decades, a new invertebrate animal model has emerged in toxicology studies: the planarian. This non-parasitic flatworm, from phylum Platyhelminthes, has an amazing regenerative capacity and has been described as “immortal under the edge of the knife” in 1814 by Dalyell. This formidable capacity is due to the abundance of stem cells called neoblasts, allowing for a tiny fragment equivalent to 1/279th of the size of the planarian to generate a whole animal. The planarian has also a human-like nervous system with several neurotransmitters and has been used to evaluate developmental perturbations and neurotoxicity. This review summarizes the main planarian toxicology studies and highlights the potential of this original animal model for research.
Poirier(2019)MedSci.jpg
JPG Image 787.9 KB
Download
Lactonase SsoPox modulates CRISPR-Cas expression in Gram-negative proteobacteria using AHL-based Quorum Sensing systems
Quorum sensing (QS) is a molecular communication system that bacteria use to harmonize the regulation of genes in a cell density-dependent manner. In proteobacteria, QS is involved, among others, in virulence, biofilm formation or CRISPR-Cas gene regulation. Here, we report for the first time the effect of a QS-interfering enzyme to alter the regulation of CRISPR-Cas systems in model and clinical strains of Pseudomonas aeruginosa, as well as in the marine bacterium Chromobacterium violaceum CV12472. The expression of CRISPR-Cas genes decreased in most cases suggesting that enzymatic disruption of QS is promising for modulating phage-bacteria interactions.
Mion(2019)ResMicrobiol.jpg
JPG Image 1.0 MB
Download
Organophosphorus poisoning: Towards enzymatic treatments
Organophosphorus compounds (OP) are toxic molecules developed as insecticides and chemical warfare nerve agents (CWNAs). Most OP are neurotoxic and act as nervous system disruptors by blocking cholinergic transmission. They are therefore responsible for many poisonings worldwide. OP toxicity may result either from acute or chronic exposure, and their poisoning effect were evaluated using several animal models. These latter were also used for evaluating the efficacy of antidotes. Strategies based on enzymes that can trap (stoichiometric bioscavengers) or degrade (catalytic bioscavengers) OP, were particularly studied since they allow effective decontamination, without toxicity or environmental impact. This review summarizes the results obtained in vivo with enzymes through three levels: prophylaxis, treatment and external decontamination. The efficiency of enzymatic treatments in different animal models is presented and the relevance of these models is also discussed for a better extrap
Jacquet(2019)AnnPharmFr.jpg
JPG Image 685.8 KB
Download
Evaluation of a robust engineered enzyme towards organophosphorus insecticide bioremediation using planarians as biosensors
Organophosphorus compounds (OPs) are neurotoxic molecules developed as insecticides and chemical warfare nerve agents (CWNAs). They are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in central and peripheral nervous systems and are responsible for numerous poisonings worldwide. Many animal models have been studied over the years but finding a suitable in vivo model to account for both acute toxicity and long-term exposure remains a topical issue. Recently, an emerging aquatic animal model harboring a mammalian-like cholinergic nervous system, the freshwater planarian from Platyhelminthes, has been used to investigate neurotoxicity and developmental disruption.

Given the tremendous toxicity of OPs, various bioremediation strategies have been considered over the years to counter their poisonous effects. Among these, enzymes have been particularly highlighted as they can degrade OPs in a fast, non toxic and environmentally friendly manner. In this article we investigat
Poirier(2019)ChemBioInt.jpg
JPG Image 869.4 KB
Download
Quorum sensing and quorum quenching: how to disrupt bacterial communication to inhibit virulence?
Most bacteria use a communication system known as quorum sensing which relies on the secretion and perception of small molecules called autoinducers enabling bacteria to adapt their behavior according to the population size and synchronize the expression of genes involved in virulence, antimicrobial resistance and biofilm formation. Methods have emerged to inhibit bacterial communication and limit their noxious traits. Chemical inhibitors, sequestering antibodies and degrading enzymes have been developed and proved efficient to decrease bacterial virulence both in vitro and in vivo. This strategy, named quorum quenching, also showed synergistic effects with traditional antibacterial treatments by increasing bacterial susceptibility to antibiotics. Thereby quorum quenching constitutes an interesting therapeutic strategy to fight against bacterial infections and limit the consequences of antibiotic resistance.
Mion(2019)MedSci.jpg
JPG Image 847.3 KB

2018


Download
Organophosphorus poisoning in animals and enzymatic antidotes
Organophosphorus compounds (OPs) are neurotoxic molecules developed as pesticides and chemical warfare nerve agents (CWNAs). Most of them are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in nervous systems, and are therefore responsible for numerous poisonings around the world. Many animal models have been studied over the years in order to decipher the toxicity of OPs and to provide insights for therapeutic and decontamination purposes. Environmental impact on wild animal species has been analyzed to understand the consequences of OP uses in agriculture. In complement, various laboratory models, from invertebrates to aquatic organisms, rodents and primates, have been chosen to study chronic and acute toxicity as well as neurobehavioral impact, immune response, developmental disruption, and other pathological signs. Several decontamination approaches were developed to counteract the poisoning effects of OPs. Among these, enzyme-based strategies are particularly attr
Poirier(2018)ESPR.jpg
JPG Image 882.0 KB
Download
Empêcher les bactéries de communiquer : diviser pour mieux soigner
Le quorum sensing (QS) est un système de communication utilisé par de nombreuses bactéries pour synchroniser leur comportement à la densité de population. Pour cela, elles sécrètent et détectent des molécules médiatrices, appelées auto-inducteurs (AI), dont la concentration dans l’environnement augmente proportionnellement au nombre de bactéries. Le QS induit des changements physiologiques et phénotypiques majeurs tels que l’induction de la virulence et la formation de biofilm. Le biofilm constitue un environnement défavorable à l’action des antibiotiques et aux traitements anti-microbiens et favorise l’apparition de résistance. La perturbation du QS, appelée Quorum Quenching (QQ), est une stratégie employée par les microorganismes eux-mêmes pour empêcher la mise en place de certains comportements de groupe. Deux stratégies ont été principalement décrites : l’utilisation d’inhibiteurs du Quorum Sensing (QSI) et d’enzyme à activité Quorum Quenchi
Mion(2018)AnnPharmFr.jpg
JPG Image 495.7 KB
Download
Structural and Biochemical Characterization of AaL, a Quorum Quenching Lactonase with Unusual Kinetic Properties
Quorum quenching lactonases are enzymes that are capable of disrupting bacterial signaling based on acyl homoserine lactones (AHL) via their enzymatic degradation. In particular, lactonases have therefore been demonstrated to inhibit bacterial behaviors that depend on these chemicals, such as the formation of biofilms or the expression of virulence factors. Here we characterized biochemically and structurally a novel representative from the metallo-β-lactamase superfamily, named AaL that was isolated from the thermoacidophilic bacterium Alicyclobacillus acidoterrestris. AaL is a potent quorum quenching enzyme as demonstrated by its ability to inhibit the biofilm formation of Acinetobacter baumannii. Kinetic studies demonstrate that AaL is both a proficient and a broad spectrum enzyme, being capable of hydrolyzing a wide range of lactones with high rates (kcat/KM > 105 M−1.s−1). Additionally, AaL exhibits unusually low KM values, ranging from 10 to 80 µM. Analysis of AaL s
Bergonzi(2018)SciRep.pdf
Adobe Acrobat Document 2.8 MB
Download
Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective
Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in
Rémy(2018)FrontPharm.pdf
Adobe Acrobat Document 2.2 MB

2017


Download
Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase
The redesign of enzyme active sites to alter their function or specificity is a difficult yet appealing challenge. Here we used a structure-based design approach to engineer the lactonase SsoPox from Sulfolobus solfataricus into a phosphotriesterase. The five best variants were characterized and their structure was solved. The most active variant, αsD6 (V27A-Y97W-L228M-W263M) demonstrates a large increase in catalytic efficiencies over the wild-type enzyme, with increases of 2,210-fold, 163-fold, 58-fold, 16-fold against methyl-parathion, malathion, ethyl-paraoxon, and methyl-paraoxon, respectively. Interestingly, the best mutants are also capable of degrading fensulfothion, which is reported to be an inhibitor for the wild-type enzyme, as well as others that are not substrates of the starting template or previously reported W263 mutants. The broad specificity of these engineered variants makes them promising candidates for the bioremediation of organophosphorus compounds. Analysis of
Jacquet(2017)SciRep.pdf
Adobe Acrobat Document 4.4 MB
Download
Enzymatic degradation of organophosphorus insecticides decreases toxicity in planarians and enhances survival
Organophosphorus insecticides (OPs) are toxic compounds used for agricultural purposes and responsible for severe types of contamination worldwide. OPs may also induce chronic deleterious effects and developmental disruption. Finding remediation strategies is a major concern to diminish their impact on environment and human health. Enzymes have emerged as a promising eco-friendly route for decontaminating OPs. The enzyme SsoPox from the archaea Sulfolobus solfataricus has been particularly studied, considering both its tremendous stability and phosphotriesterase activity. However, the toxicity of the degradation products generated through enzyme hydrolysis has been poorly investigated. To address both neurotoxicity and developmental perturbation, freshwater planarians from Platyhelminthes were considered to evaluate the impact of OP and degradation product exposure. Planarians have a large proportion of stem cells that give them an unconventional capacity for regeneration. OPs were fou
Poirier(2017)SciRep.pdf
Adobe Acrobat Document 3.9 MB
Download
Decontamination of organophosphorus compounds: Towards new alternatives
Organophosphorus coumpounds (OP) are toxic chemicals mainly used for agricultural purpose such as insecticides and were also developed and used as warfare nerve agents. OP are inhibitors of acetylcholinesterase, a key enzyme involved in the regulation of the central nervous system. Chemical, physical and biological approaches have been considered to decontaminate OP. This review summarizes the current and emerging strategies that are investigated to tackle this issue with a special emphasis on enzymatic remediation methods. During the last decade, many studies have been dedicated to the development of biocatalysts for OP removal. Among these, recent reports have pointed out the promising enzyme SsoPox isolated from the archaea Sulfolobus solfataricus. Considering both its intrinsic stability and activity, this hyperthermostable enzyme is highly appealing for the decontamination of OP.
Poirier(2017)AnnPharmFr.jpg
JPG Image 766.1 KB
Download
Effect of Quorum Quenching Lactonase in Clinical Isolates of Pseudomonas aeruginosa and Comparison with Quorum Sensing Inhibitors
Pseudomonas aeruginosa is a Gram negative pathogenic bacterium involved in many human infections including otitis, keratitis, pneumonia, and diabetic foot ulcers. P. aeruginosa uses a communication system, referred to as quorum sensing (QS), to adopt a group behavior by synchronizing the expression of certain genes. Among the regulated traits, secretion of proteases or siderophores, motility and biofilm formation are mainly involved in the pathogenicity. Many efforts have been dedicated to the development of quorum sensing inhibitors (QSI) and quorum quenching (QQ) agents to disrupt QS. QQ enzymes have been particularly considered as they may act in a catalytic way without entering the cell. Here we focus on the lactonase SsoPox which was previously investigated for its ability to degrade the signaling molecules, acyl-homoserine lactones, in particular on the engineered variant SsoPox-W263I. We highlight the potential of SsoPox-W263I to inhibit the virulence of 51 clinical P. aeruginos
Gendouze(2017)FrontMicrob.pdf
Adobe Acrobat Document 2.0 MB

2016


Download
Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications
Extremozymes have gained considerable interest as they could meet industrial requirements. Among these, SsoPox is a hyperthermostable enzyme isolated from the archaeon Sulfolobus solfataricus.This enzyme is a lactonase catalyzing the hydrolysis of acyl-homoserine lactones; these molecules are involved in Gram-negative bacterial communication referred to as quorum sensing. SsoPox exhibits promiscuous phosphotriesterase activity for the degradation of organophosphorous chemicals including insecticides and chemical warfare agents. Owing to its bi-functional catalytic abilities as well as its intrinsic stability, SsoPox is appealing for many applications, having potential uses in the agriculture, defense, food and health industries. Here we investigate the biotechnological properties of the mutant SsoPox-W263I, a variant with increased lactonase and phosphotriesterase activities. We tested enzyme resistance against diverse process-like and operating conditions such as heat resistance conta
Remy(2016)SciRep.pdf
Adobe Acrobat Document 958.3 KB
Download
Enzymes for disrupting bacterial communication, an alternative to antibiotics?
Quorum sensing (QS) is used by bacteria to communicate and synchronize their actions according to the cell density. In this way, they produce and secrete in the surrounding environment small molecules dubbed autoinducers (AIs) that regulate the expression of certain genes. The phenotypic traits regulated by QS are diverse and include pathogenicity, biofilm formation or resistance to anti-microbial treatments. The strategy, aiming at disrupting QS, known as quorum quenching (QQ), has emerged to counteract bacterial virulence and involves QS-inhibitors (QSI) or QQ-enzymes degrading AIs. Differently from antibiotics, QQ aims at blocking cell signaling and does not alter bacterial survival. This considerably decreases the selection pressure as compared to bactericide treatments and may reduce the occurrence of resistance mechanisms. QQ-enzymes are particularly appealing as they may disrupt molecular QS-signal without entering the cell and in a catalytic way. This review covers several aspe
Remy(2016)AnnPharmFr.png
Portable Network Image Format 245.7 KB
Download
Biotechnological applications of quorum quenching enzymes
Numerous bacteria use quorum sensing (QS) to synchronize their behavior and monitor their population density. They use signaling molecules known as autoinducers (AI's) that are synthesized and secreted into their local environment to regulate QS-dependent gene expression. Among QS-regulated pathways, biofilm formation and virulence factor secretion are particularly problematic as they are involved in surface-attachment, antimicrobial agent resistance, toxicity, and pathogenicity. Targeting QS represents a promising strategy to inhibit undesirable bacterial traits. This strategy, referred to as quorum quenching (QQ), includes QS-inhibitors and QQ enzymes. These approaches are appealing because they do not directly challenge bacterial survival, and consequently selection pressure may be low, yielding a lower occurrence of resistance. QQ enzymes are particularly promising because they act extracellularly to degrade AI's and can be used in catalytic quantities. This review draws an overvie
Bzdrenga(2016)CBI.png
Portable Network Image Format 441.9 KB
Download
Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes
Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its
Jacquet(2016)ESPR.png
Portable Network Image Format 126.7 KB